Continuous Trajectories for Primal-Dual Potential-Reduction Methods
نویسنده
چکیده
This article considers continuous trajectories of the vector fields induced by two different primal-dual potential-reduction algorithms for solving linear programming problems. For both algorithms, it is shown that the associated continuous trajectories include the central path and the duality gap converges to zero along all these trajectories. For the algorithm of Kojima, Mizuno, and Yoshise, there is a a surprisingly simple characterization of the associated trajectories. Using this characterization, it is shown that all associated trajectories converge to the analytic center of the primal-dual optimal face. Depending on the value of the potential function parameter, this convergence may be tangential to the central path, tangential to the optimal face, or in between.
منابع مشابه
Asymptotic Behavior of Continuous Trajectories for Primal-Dual Potential-Reduction Methods
This article considers continuous trajectories of the vector fields induced by primaldual potential-reduction algorithms for solving linear programming problems. It is known that these trajectories converge to the analytic center of the primal-dual optimal face. We establish that this convergence may be tangential to the central path, tangential to the optimal face, or in between, depending on ...
متن کاملLimiting behavior of the affine scaling continuous trajectories for linear programming problems
We consider the continuous trajectories of the vector field induced by the primal affine scaling algorithm as applied to linear programming problems in standard form. By characterizing these trajectories as solutions of certain parametrized logarithmic barrier families of problems, we show that these trajectories tend to an optimal solution which in general depends on the starting point. By con...
متن کاملInfeasible - Start Primal - Dual Methodsand
In this paper we present several \infeasible-start" path-following and potential-reduction primal-dual interior-point methods for nonlinear conic problems. These methods try to nd a recession direction of the feasible set of a self-dual homogeneous primal-dual problem. The methods under consideration generate an-solution for an-perturbation of an initial strictly (primal and dual) feasible prob...
متن کاملPrimal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملNonsymmetric potential-reduction methods for general cones
In this paper we propose two new nonsymmetric primal-dual potential-reduction methods for conic problems. The methods are based on the primal-dual lifting [5]. This procedure allows to construct a strictly feasible primal-dual pair related by an exact scaling relation even if the cones are not symmetric. It is important that all necessary elements of our methods can be obtained from the standar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001